
ARGONNE NATIONAL LABORATORY

9700 South Cass Avenue

Argonne, Illinois 60439

Do You Trust Derivatives or Differences?∗
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Do You Trust Derivatives or Differences?∗

Jorge J. Moré and Stefan M. Wild

Abstract

We analyze the relationship between the noise level of a function and the accuracy

and reliability of derivatives and difference estimates. We derive and empirically validate

measures of quality for both derivatives and difference estimates. Using these measures,

we quantify the accuracy of derivatives and differences in terms of the noise level of the

function. An interesting consequence of these results is that the derivative of a function

is not likely to have working precision accuracy for functions with modest levels of noise.

1 Introduction

Although the accurate estimation of the derivative of a nonlinear mapping f : Rn 7→ R is a

central problem in computational science, most of the literature in this area is restricted to

the case where the noise level in the function f is on the order of machine precision. In this

work we study the relationship between the noise of f and the accuracy of (finite-precision)

estimates f ′ of the derivative and estimates δf obtained by differences of functions values.

In [13] we defined computational noise for functions determined by a stochastic pro-

cess. We showed that the stochastic framework can be applied to deterministic functions

with results that are consistent with our intuition. In addition, we have developed the

ECNoise algorithm that determines the noise level εf of the function near a base point with

a few additional function evaluations. Consult [13] for an extensive discussion of noise and

computational results for the ECNoise algorithm.

The noise level εf of a function f measures the accuracy and uncertainty in the computed

function values. Thus it is important to know how the noise level of the function affects the

accuracy of f ′ and δf . We address two basic questions:

� Can we rely on f ′ and δf when the noise level εf of f is high?

� What is the relationship between εf and the accuracy of f ′ and δf?

As we will see, answering these questions requires the development of tools for measuring

the accuracy of f ′ and δf and yields surprising results.

A systematic approach for producing accurate estimates of the derivative of a function

f is to use automatic differentiation tools [1, 8, 14]. The derivative codes produced by these

tools can be shown to be backward stable [8, Section 3.4] under suitable conditions on the

elemental functions in the function evaluation, and thus these tools are frequently claimed

to produce derivatives that are accurate to working precision. The claim [8, page 50] that
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“once an AD tool has been applied successfully . . . we have never heard of com-

plaints concerning the precision of the derivative values”

is typical. We will lend empirical evidence supporting this claim when the noise level of

the function is on the order of machine precision, but we also show that this claim fails for

functions with modest levels of noise.

The derivative produced by the forward mode of automatic differentiation tools is essen-

tially a line-by-line differentiation of the function evaluation code and is thus representative

of the default derivative code that could be produced by a computational scientist. On the

other hand, a computational scientist can use additional information to produce a deriva-

tive with different numerical characteristics; we emphasize that our conclusions about the

performance of derivative codes may not apply to these alternative hand-coded derivatives.

The accuracy of a difference estimate δf of the derivative is well known to depend on

the choice of difference parameter. We have shown [12] that we can determine a difference

parameter that is provably near-optimal when the function values are determined by a

stochastic process. We have also shown that the stochastic techniques can be used to

determine accurate derivative estimates when the function is deterministic. Additionally,

we have shown that for a forward difference estimate the accuracy of δf is closely related

to ε
1/2
f .

Our computational results use a basic component in scientific simulations: the iterative

solution of systems of linear equations with a Krylov solver. Section 2 examines the conti-

nuity and differentiability properties of mappings defined by a Krylov solver. We show that

given a continuously differentiable function h : Rn 7→ Rn, if there is an upper bound m on

the number of iterations and if yτ : Rn 7→ Rn is defined by letting yτ (x) be the approximate

solution of Ay = h(x) computed by a Krylov solver with the standard relative residual

termination test with tolerance τ , then yτ is continuously differentiable in any compact set

Ω of starting points except for a finite number of tolerances τ . This result guarantees the

existence of the derivative for the mappings considered in this work. We also show that y′τ
is uniformly bounded in Ω for all τ ≥ τmin, where τmin ≥ 0 depends on the bound m on the

number of iterations and the properties of the iterative method. For example, if the Krylov

solver is guaranteed to terminate within m iterations, then τmin = 0.

Results on the differentiability properties of mappings defined by iterative methods have

appeared in the literature [3, 4, 7], but these results assume that the mapping of interest

is the limit of a sequence of differentiable mappings. In particular, no termination test is

performed. In this work we are interested mainly in the differentiability properties of yτ for

finite values of τ > 0 and are only marginally concerned with the limit of yτ as τ → 0.

Section 3 examines the relationship between the tolerance τ and the relative noise level

of functions fτ that depend on τ . Our computational experiments use functions defined

by fτ (x) = ‖yτ (x)‖2, where yτ (x) has already been defined as the approximate solution

of Ay = h(x) obtained by a Krylov solver and where the matrices A are the symmetric

positive definite matrices of dimension less than 104 in the University of Florida Sparse

Matrix Collection [6]. We discuss results for a variety of solvers and tolerances but focus

on bicgstab; results for other solvers, including pcg, minres, and gmres, appear in [11]. The
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main observation in this section is that the dependence of the noise level on the tolerance

follows a general pattern: The noise level is low for large tolerances but increases sharply as

the tolerance τ decreases and then decreases gradually as τ decreases further. The relative

noise level of at least 80% of the functions is higher than 10−10 for at least one tolerance.

This observation is important because it shows that we can obtain at most 10 significant

digits from these functions.

We study the accuracy of the derivative of fτ in Section 4 in terms of the relative

error metric (see, e.g., Ziv [17]) between the derivatives computed with the IntLab [14] and

ADiMat [1] Matlab-based automatic differentiation tools and the relative error between two

nearby derivative values. We show that the relative error of f ′τ is usually on the order

of the noise level εf . This observation shows that we cannot expect to obtain double

precision accuracy if the functions have modest levels of noise. A surprising outcome of

these experiments is that the derivatives of functions with a high noise level are unstable.

Section 5 reviews techniques [12] for determining a nearly optimal difference parameter

h∗ for a forward difference estimate δfτ and then presents computational results concerning

the accuracy of δfτ as measured by the relative error metric re(δfτ , f
′
τ ) between δfτ and f ′τ .

The main contribution of this section is a computable estimate Γ(δfτ ) of the relative error

re(δfτ , f
′
τ ) determined from the same information needed to determine h∗. Our numerical

results show remarkable agreement between Γ(δfτ ) and re(δfτ , f
′
τ ), and thus we are able to

predict the accuracy of δfτ as a by-product of the computation of h∗.

The results in Sections 4 and 5 show that the derivative estimate f ′τ obtained from the

automatic differentiation tools have higher accuracy than δfτ when the function has modest

levels of noise. However, these results also show that if the noise level is high, then this

conclusion can fail to hold. We study these functions in Section 6 with the tools that we

have developed to estimate the accuracy of derivative and difference estimates; the aim is

to analyze cases where the accuracy of f ′τ and δfτ is not acceptable. The results for the

bicgstab and idr solvers are of particular interest because these solvers generate problems

with unusually high levels of noise.

2 Continuity and Differentiability of Krylov Solvers

We begin by investigating the continuity properties of functions defined by the approximate

solution of a system of linear equations by an iterative process. We consider Krylov solvers

because these solvers are commonly used in computational science applications, but we

expect to find similar behavior for other solvers and other problems.

Let h : Rn 7→ Rn be a continuous mapping, and let yτ : Rn 7→ Rn be the mapping

defined as the solution of Ay = h(x) returned by a deterministic Krylov solver that uses a

tolerance τ > 0. We use the standard termination test based on the residual,

‖Ay − h(x)‖ ≤ τ‖h(x)‖, (2.1)

where ‖ · ‖ is the l2 norm. The matrix A is assumed to be nonsingular.
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The iterates of a Krylov solver for the system Ay = h(x) depend on x through the

starting point. We assume that the Krylov solver has no breakdowns and that it generates

iterates y0(x), . . . , ym(x) until the termination test (2.1) is satisfied or the Krylov solver

reaches a limit m on the number of iterations. We assume that the starting point y0(x)

is a continuously differentiable function of x but that m is independent of x. We could

choose m to be a fixed number or to be dependent on the number of variables, for example,

m = 2n. Also note that we can always assume that the Krylov solver generates m iterates

by defining yk(x) = yj(x) for j < k ≤ m if yj(x) satisfies (2.1) for some j < m.

The function yk : Rn 7→ Rn maps x into the kth iterate generated by the solver. Each

function yk is continuously differentiable because the iterates are the composition of con-

tinuously differentiable functions of the starting point y0(x). A glance at the formulation of

any Krylov solver confirms this claim, but this claim also holds for most iterative solvers.

See, for example, the implementations detailed in [2, 15, 16].

The mapping yτ : Rn 7→ Rn is defined by letting yτ (x) be the first iterate that satisfies

the termination test (2.1). The properties of yτ in a neighborhood of a point x0 with

h(x0) 6= 0 can be described in terms of the parameters

τk =
‖Ayk(x0)− h(x0)‖

‖h(x0)‖
, 0 ≤ k ≤ m. (2.2)

The definition of τk shows that the kth iterate of the solver satisfies the termination test

(2.1) for x = x0 if and only if τ ≥ τk. Hence, the mapping yτ is well defined at x0 if

τ ≥ τmin, where

τmin = min {τk : 0 ≤ k ≤ m} .

We assume that τ ≥ τmin in our analysis of the properties of yτ because (2.1) cannot be

satisfied within m iterations when τ < τmin. Later we will assume that the Krylov solver

terminates at the solution in at most m iterations and thus τmin = 0, but this situation may

not happen if m is not large enough or if the properties of the matrix A do not guarantee

termination of the solver. The following result addresses the differentiability properties of

yτ in a neighborhood of x0.

Theorem 2.1. Assume that h : Rn 7→ Rn is continuously differentiable in a neighborhood

of x0 and that h(x0) 6= 0. If τ ≥ τmin, then the mapping yτ : Rn 7→ Rn is continuously

differentiable in a neighborhood Nτ (x0) of x0 if τ /∈ {τ0, . . . , τm}, where τk is defined by

(2.2). Moreover,

y′τ (x) ∈
{
y′k(x) : 0 ≤ k ≤ m

}
, x ∈ Nτ (x0). (2.3)

Proof. We have already noted that if τ ≥ τmin, then yτ is well defined at x0. If the solver

terminates at the kth iteration, then

‖Ayk(x)− h(x)‖ < τ‖h(x)‖, ‖Ayj(x)− h(x)‖ > τ‖h(x)‖, 0 ≤ j < k (2.4)

holds for x = x0 because τ 6= τk and h(x0) 6= 0. The continuity of h and yj then show that

(2.4) holds for all x in a neighborhood Nτ (x0) of x0. Hence, yτ (x) = yk(x) on Nτ (x0), and

this implies that yτ is continuously differentiable in Nτ (x0). In particular, y′τ (x) = y′k(x)

on Nτ (x0), and thus (2.3) holds.
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Another way to phrase the main conclusion of Theorem 2.1 is that y′τ is continuous in a

neighborhood of any point x0 for almost all τ ≥ τmin, and thus computing approximations to

y′τ (x0) is well defined. In general, the terminology for almost all x means that the property

in question holds except for a finite number of values of the parameter x.

Theorem 2.1 is local but can be extended by compactness arguments. Assume that a

compact set Ω ⊂ Rn contains all points of interest. Since yτ is continuously differentiable

in a neighborhood of any x0 ∈ Ω except for τ in {τ0, . . . , τm}, we can cover Ω with a finite

number of such neighborhood. Thus yτ is continuously differentiable in Ω for

τ ≥ τmin ≡ max
x∈Ω

{
min

0≤k≤m

{
‖Ayk(x)− h(x)‖

‖h(x)‖

}}
(2.5)

except for a finite number of τ . We formally state this result for later reference.

Theorem 2.2. Assume that h : Rn 7→ Rn is continuously differentiable in a compact set

Ω and that h(x) 6= 0 in Ω. If τ ≥ τmin, where τmin is defined by (2.5), then the mapping

yτ : Rn 7→ Rn is continuously differentiable in Ω for almost all values of τ . Moreover, y′τ is

uniformly bounded in Ω for almost all τ ≥ τmin.

Proof. We have already shown that yτ is continuously differentiable for almost all τ . The

proof of the uniform boundedness of y′τ follows from (2.3) because this inclusion implies

that

‖y′τ (x)‖ ≤ max
0≤k≤m

{
‖y′k(x)‖

}
, x ∈ Ω,

whenever y′τ (x) exists. The term on the right side is bounded, independent of τ , and thus

y′τ is uniformly bounded for almost all τ .

In these results we have shown that yτ is defined for x ∈ Ω with τ ≥ τmin, where τmin is

defined by (2.5). We now assume that τmin = 0 and thus yτ is defined on Ω for all τ ≥ 0.

This assumption holds if m is large enough and the properties of the algorithm guarantee

finite termination for all x in Ω. For an overview of the convergence theory of Krylov solvers,

see [15, 16]. For recent results on bicgstab and idr, see [9].

Other properties of yτ under the assumption that τmin = 0 follow from Theorem 2.2.

We now know that yτ is continuously differentiable in Ω for almost all τ and that y′τ is

uniformly bounded on Ω for almost all τ . We also note that

lim
τ→0

yτ (x) = A−1h(x), (2.6)

since yτ satisfies the termination test (2.1) for τ > 0 and A−1h(x) is the unique solution to

the limiting case Ay = h(x).

An important point to keep in mind is that although y′τ exists except for a finite number

of values of τ , the function yτ may not be continuous at these exceptional values of τ . The

following result illustrates this point.

Theorem 2.3. The mapping yτ : Rn 7→ Rn can be discontinuous if τ ∈ {τ0, . . . , τm}.
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Proof. Consider the conjugate gradient solver for the system Ay = h(x), where

A =

(
β 0

0 1

)
, h(x) =

(
β

0

)
, β > 0.

Given a starting point x0 = (ξ1, ξ2), the first iterate of the conjugate gradient method is

y1 =

(
ξ1 + α0β(1− ξ1)

(1− α0)ξ2

)
, where α0 =

β2(1− ξ1)2 + ξ2
2

β3(1− ξ1)2 + ξ2
2

.

Thus the step length α0 is a rational function of (ξ1, ξ2). Moreover, a calculation shows that

φ(ξ1, ξ2) = ‖Ay1 − b‖2 = β2(1− ξ1)2(α0β − 1)2 + (1− α0)2ξ2
2 .

The square of the residual, φ, and the mapping y1 are continuously differentiable functions

of the initial iterate (ξ1, ξ2) in any set that does not contain the solution y∗ = (1, 0) of the

linear system. If the starting point is chosen in a compact set that does not contain y∗,

then there is a σ > 0 such that ‖y1 − y∗‖ ≥ σ.

Restrict the initial point (ξ1, ξ2) so that ∇φ(ξ1, ξ2) 6= 0. We now show that yτ is not

a continuous function of the starting point (ξ1, ξ2) for τ = τ1. Note that yτ1(ξ1, ξ2) = y1

by the definition of τ1. Since φ increases along any ray p with ∇φ(ξ1, ξ2)T p > 0, a small

perturbation to the initial iterate along the ray p increases the residual, and then the

conjugate gradient method takes one more iteration to achieve the tolerance τ1. The finite

termination property of the conjugate gradient method then guarantees that yτ1(ξ1, ξ2) = y∗

for the perturbed initial point. Since ‖y1 − y∗‖ ≥ σ, we have shown that a small change in

the starting point can yield changes that are bounded away from zero. Hence, yτ1 is not

continuous.

We used the conjugate gradient method to illustrate that yτ may be discontinuous, but

Theorem 2.3 can be modified for other Krylov methods. The important characteristics are

that the square of the residual is a rational function of the initial iterate and that the solver

terminates at the solution after two iterates when n = 2.

3 Noise Levels of Krylov Solvers

We now investigate the noise level of a function defined by the solution of a system of linear

equations by an iterative process. The model function that we have chosen is defined by

fτ (x) = ‖yτ (x)‖2, (3.1)

where yτ (x) is the first iterate of a Krylov solver that satisfies the termination test (2.1).

Section 2 presents results on the continuity and differentiability of yτ for a general system

of the form Ay = h(x); our computational results use h(x) = x exclusively.

We consider a family of functions fτ defined by a matrix A and indexed by the tolerance

τ . We use the same set of 116 matrices used in [13], representing all symmetric positive
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definite matrices of dimension less than 104 in the University of Florida (UF) Sparse Matrix

Collection [6]. Following [13], we scale the matrices by their diagonals and randomly select

the base point x0.

Almost 25% of the matrices in this selection have a small condition number. Fifteen

of the matrices are diagonal and hence have unit condition number after the scaling; 28

matrices have condition number less than 10; and all but 10 have condition number less

than 1010.

We begin our study of the properties of fτ by computing the noise level. We can estimate

the noise level by evaluating fτ in a neighborhood and calculating the standard deviation of

the function values. This approach is not computationally feasible for expensive functions,

however, and thus we have developed the ECNoise algorithm [13] to determine the noise

level εf of a function in a few function evaluations.

The noise level εf provides valuable information on the function in a neighborhood of the

base point x0. For example, we can use the noise level εf of a function f in a neighborhood

of x0 to make assertions about other function values in this neighborhood. In particular,

we can claim that if we make small perturbations to x0, then

|f(x)− f(x0)| ≤ γεf

is likely to hold for γ ≥ 1 of modest size. The noise level εf models the uncertainty in

the function because, as discussed in [13], small changes in the code that evaluates f (for

example, the order of operations, compiler options, libraries, or operating system) produce

average variations of order εf in the value of f . Thus, the number of significant digits in

f(x) is likely to be less than blog(ε−1
f )c.

We have emphasized the role that the noise level εf plays in the uncertainty of the

function values, but the noise level also plays an important role in termination criteria for

optimization algorithms and in determining optimal difference parameters. See [10, 12, 13]

for a discussion of these issues and more information on computational noise. Sections 4

and 5 discuss, respectively, the relationship between the noise level εf and the accuracy of

derivatives and differences.

The ECNoise algorithm [13] estimates the noise level εf of a function by evaluating f

along a ray in the domain of the function. Specifically, ECNoise chooses a random direction

p and evaluates the function t 7→ fτ (x0 + tp) on a set of nf equally spaced points on the

interval [−h, h] for some parameter h. As shown in [12, 13], the performance of ECNoise is

essentially independent of the choices of h and p provided h is reasonably small.

The ECNoise algorithm determines the absolute noise in a neighborhood of a point x0,

but in discussions of the noise level we find it convenient to use εf to refer to the relative noise

of fτ , that is, the absolute noise divided by (nonzero) |f(x0)|. We expect the relative noise

to be on the order of machine precision for the mathematical functions that are typically

provided by a programming environment, but the noise level of more complicated functions

must be determined computationally.

From the benchmark set of 116 matrices we looked at fτ for a variety of tolerances and
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Figure 3.1: Distribution of the relative noise εf for fτ using bicgstab.

solvers. Here we focus on data for the bicgstab solver and tolerances in

T = {10−k : k = 2, 4, 6, 8}. (3.2)

Results for more tolerances and solvers can be found at [11].

For bicgstab, convergence (satisfying (2.1) within n iterations, where n is the size of x0)

was obtained in more than 90% of these 464 problems, with failures usually occurring when

the associated matrix was ill-conditioned and the tolerance τ was small. We now restrict

attention to the 435 cases where the Krylov solver converges and thus fτ is well defined.

In these cases ECNoise with nf = 9 and h = 10−12 computed the noise level in more than

99% of the problems. ECNoise is not designed for very noisy problems and does not return

an estimate when the relative noise is much larger than 10−2; the largest relative noise

returned on these problems was approximately 3 · 10−2.

Figure 3.1 shows the relative noise εf for the functions fτ defined by (3.1) with the

four tolerances τ ∈ T . In this plot we have arranged the functions in increasing order

of the condition number of the matrix that defines the function. Thus, functions with

well-conditioned matrices are listed first. This plot shows that there is a set of roughly 35

functions with a noise level on the order of machine precision for all tolerances. This result

agrees with our expectations because, for these problems, the Krylov solver converges in a

few iterations, often independent of the tolerance τ .

The most interesting functions are those for which the noise level is at least an order of

magnitude above machine precision for at least one tolerance. These functions are outside

the first third of Figure 3.1. In general, at least 80% of these functions have a noise level

above 10−10 for at least one tolerance. This percentage depends on the solver; it goes to 90%

for bicgstab, but declines to 71% for minresqlp [5] and 47% for gmres. These observations

are of interest because they imply that, with high probability, most solvers deliver at most

10 significant digits in the value of fτ for some tolerance, and this places a limit on the

precision of any simulation that uses this value. By this measure, gmres is the solver that

generates the least noise.
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Figure 3.2: Distribution of the relative noise for fτ . On the left is the cumulative distribution

as a function of εf for five different Krylov solvers from [11]. On the right is the distribution

of εf as a function of τ for fτ using a matrix with the median condition number.

We can obtain an accurate view of the noise generated by different solvers by computing

the cumulative distribution function for εf generated by a solver. Figure 3.2 (left) shows the

portion of the empirical distribution of the relative noise in fτ over the range [10−10, 10−2].

Thus, gmres generates the least noise, idr (idr(s) with s = 4 is used throughout our ex-

periments) and bicgstab generate the most noise, while minresqlp generates about the same

amount of noise as pcg. Additional information can be obtained from the histograms of the

relative noise in [11].

Another interesting observation is that the noise level decreases as the tolerance is

decreased, but only after the tolerance decreases below a certain threshold that varies from

function to function. This can be deduced from Figure 3.1 by noting that the data points

for τ = 10−8 are almost always below the data point for τ = 10−6. However, the position

of the data point for τ = 10−4 is unpredictable because it tends to be near the threshold

where the noise level starts to decrease.

Figure 3.2 (right) underscores this behavior on a typical (median condition number in

the benchmark set) matrix. This figure lends further evidence to the consistency of ECNoise,

since the noise level varies remarkably smoothly as the tolerance changes; the lack of data

points for idr with small tolerances is due to the lack of convergence in n iterations. For the

three Krylov solvers bicgstab, pcg, and idr, the noise is on the order of machine precision

when the tolerance τ is large but then sharply rises as the number of iterations (and hence

the number of operations) increases. When τ is sufficiently small, the noise begins to decline.

The relationship between the noise and the tolerance in Figure 3.2 is typical of that seen

for other solvers and other matrices [11]. This behavior is interesting because it illustrates

that a nonmonotone relationship exists between the noise and the truncation error (as

guided by the tolerance). While decreasing a tolerance may guarantee smaller truncation

errors, it can also lead to a significant rise in the noise. As discussed in the next section,

high noise levels can adversely impact applications where derivatives are desired.
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4 Computational Noise in Derivatives

In this section we examine the accuracy of derivative computations by comparing different

methods for computing a derivative. In many cases, the differences are small, and so

the relative errors are an adequate measure of the differences. In some cases, however,

we compare quantities that differ by several orders of magnitude, and then we need a

different measure. The relative error is the standard method to compare scalars that differ

in magnitude, but we use a variation that is symmetric with respect to the scalars used in

the comparisons. We define re (α, β) for scalars α and β with max(|α|, |β|) > 0 by

re (α, β) =
|α− β|

max(|α|, |β|)
, (4.1)

and we complete this definition by setting re (α, β) = 0 when max(|α|, |β|) = 0. Ziv [17]

proposed this definition for the analysis of roundoff errors and proved that re (·, ·) was a

metric for R. Below we gather additional properties of this metric.

Lemma 4.1. Given α and β in R, the function defined in (4.1) satisfies the following:

� re (α, β) = 0 if and only if α = β.

� re (α, β) ∈ (0, 1) if and only if α and β have the same sign and α 6= β.

� re (α, β) = 1 if and only if 0 = min(|α|, |β|) < max(|α|, |β|).

� re (α, β) ∈ (1, 2] if and only if α and β have opposite signs.

Proof. The proof follows the same pattern in all cases, so we consider only the second case.

Assume first that re (α, β) ∈ (0, 1). Then α 6= β, and neither α nor β can be zero. If,

on the contrary, we have α and β with opposite signs, then we can assume that α > 0 > β.

This implies that

|α− β| > max(α,−β) = max(|α|, |β|),

and then re (α, β) > 1. This contradiction shows that α and β must have the same sign.

Assume now that α and β have the same sign. Without loss of generality we can also

assume that α ≥ β > 0. In this situation,

|α− β| < |α| = max(|α|, |β|).

Hence, re (α, β) < 1. Moreover, if α 6= β, we also have re (α, β) > 0.

Lemma 4.1 highlights some of the advantages of the relative error defined by re (·, ·) over

the standard relative error |α − β|/|α|. Of key importance is the symmetry of re (·, ·) with

respect to the arguments so that the relative error does not depend on the order of the

arguments. This definition of relative error can be extended to vectors in Rn by defining

re (x, y) =
‖x− y‖

max(‖x‖, ‖y‖)
.

10



This extension is of interest because Ziv [17] has shown that if ‖ · ‖ is an inner-product

norm, then (x, y) 7→ re (x, y) is a metric. Another possible extension is to functions defined

in a domain Ω. In this case,

re (f1, f2) = sup
x∈Ω

re (f1(x), f2(x)) ,

where fk : Rn 7→ Rm for k = 1, 2. Since re (·, ·) is a metric in Rm, this definition extends

re (·, ·) to function space.

We use re (·, ·) to measure the difference between two data vectors. A plot of the relative

error between components of the data vectors leads to nicely scaled graphs because in all

cases re (α, β) ≤ 2. In these plots we pay special attention to components with re (α, β) ≥ 1

because Lemma 4.1 shows that these components do not have the same sign. The next

result shows that components with re (α, β) ≈ 1 also merit close attention.

Lemma 4.2. If re (α, β) = µ ∈ (0, 1), then

max(|α|, |β|) =
1

1− µ
min(|α|, |β|).

Proof. If re (α, β) ∈ (0, 1), then α and β have the same sign. Assume, without loss of

generality, that α ≥ β > 0. Then

µ = re (α, β) =
α− β
α

,

and thus (1− µ)α = β, as we wanted to show.

We use re (·, ·) to examine the accuracy of derivative computations by computing the

directional derivative f ′τ (x0; p) of the functions fτ defined by (3.1). We use the same random

direction p as in the estimation of the noise. For these experiments we use the IntLab [14]

and ADiMat [1] systems for computing the directional derivative. The quantity of interest

in these experiments is

Γ2(f ′τ ) ≡ re
(
f ′τ,1(x0; p), f ′τ,2(x0; p)

)
, (4.2)

where f ′τ,1(x0; p) and f ′τ,2(x0; p) are the directional derivatives computed by the two systems.

Thus, Γ2(f ′τ ) is the relative error of f ′τ when computed by two different algorithms. IntLab

and ADiMat use the forward mode of automatic differentiation [8] to compute these deriva-

tives, but the implementation of this mode (operator overloading and source transformation,

respectively) can lead to different algorithms.

The relative error Γ2(f ′τ ) measures the accuracy of the derivative computed by automatic

differentiation tools, but requires two systems for the generation of the derivatives. This is

a serious obstacle for many scientific computations. For example, automatic differentiation

through operator overloading was not performed for some of the other solvers tested in our

experiments because it required significant changes to the standard implementations. As

an alternate measure, consider

Γ(f ′τ ) ≡ re
(
f ′τ (x0; p), f ′τ (x0; (1 + ε)p)

)
, ε > 0,
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Figure 4.1: Distribution of the relative error estimates Γ2(f ′τ ) (left) and Γ(f ′τ ) (right) for

bicgstab as a function of the relative noise εf ; the dashed line is (t, t).

where p is a given direction in Rn. The measure Γ(f ′τ ) is the relative error when f ′τ is

computed at a fixed x0 with a small modification to the direction p. For any ε > 0 we have

Γ(f ′τ ) = ε/(1 + ε) since the directional derivative is a linear function of the second argument.

Thus Γ(f ′τ ) is independent of the function fτ , the base point x0, and the direction p. Note,

however, that although Γ(f ′τ ) ≤ ε, this may not hold when f ′τ (x0; p) is computed in finite

precision.

Figure 4.1 compares these two measures of accuracy for the bicgstab solver. On the

left side is the distribution of Γ2(f ′τ ) while the right side shows the values of Γ(f ′τ ) using

the ADiMat derivative and ε = εM , where εM is the machine precision in double-precision

IEEE arithmetic. This figure shows that the results obtained with Γ2(f ′τ ) and Γ(f ′τ ) are

similar, and thus either measure could be used to measure accuracy. The measure Γ(f ′τ )

is preferable to Γ2(f ′τ ) because it can be computed for any simulation for which we have

a derivative code at the cost of one additional evaluation of the directional derivative, and

thus we use Γ(f ′τ ) with ε = εM and the ADiMat derivative throughout the rest of the paper.

One of the most interesting aspects of Figure 4.1 is the appearance of high relative errors

Γ2(f ′τ ) and Γ(f ′τ ) for functions with high levels of noise. Functions with Γ2(f ′τ ) ≥ 0.5 are of

special interest because for these functions the derivatives computed by IntLab and ADiMat

differ by at least a factor of 2. A detailed examination of the data shows that for these

functions the derivatives often differ in sign and the magnitude grows as τ decreases. Hence,

the computational evidence indicates that the directional derivative f ′τ is not bounded as

τ decreases. Since Theorem 2.2 guarantees that the derivatives are bounded in infinite

precision, these results show that the theoretical properties of the Krylov solver do not

imply accurate derivatives in finite precision as the tolerance τ decreases.

Figure 4.1 (right) suggests that the noise level εf can be used as an estimate of the

relative error Γ(f ′τ ) in the derivative on about half the problems and that Γ(f ′τ ) is high on

most of the other problems. This observation holds for all the solvers in [11] because an

analysis of the data shows that if we consider problems with reasonably accurate derivatives
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Figure 4.2: Distribution of the noise level in the ADiMat derivatives for bicgstab (left) and

pcg (right); the shaded region lies between (t, t/10) and (t, 10t).

(in the sense that Γ(f ′τ ) ≤ 0.05), then the noise level εf is within a factor of 100 of Γ(f ′τ )

for at least 80% of the problems. This observation shows that we cannot expect to obtain

the derivative with double-precision accuracy if the noise level εf of the function is safely

above machine precision, and thus claims of obtaining derivatives to working accuracy are

false.

We have also investigated the relationship between the noise level of the directional

derivative and the noise level of the function. For bicgstab, Figure 4.2 (left) shows that

roughly 80% of the computable noise estimates are within a factor 10 of the noise in the

function, εf . As previously discussed, ECNoise does not return an estimate when the noise

is too large; if derivatives are at least as noisy as functions, it is not surprising that many

data points are missing in Figure 4.2 (left) for the noisiest functions. Figure 4.2 (right)

shows the noise in the derivatives for pcg, which tends to be less noisy than bicgstab. Our

results [11] show that for all Krylov solvers, the noise level of the derivative is larger than

εf/10 (the lower boundary of the shaded region in Figure 4.2) on 97% of the problems.

As an outcome of this work, we know that the noise level of the derivative tends to be

an order of magnitude estimate of the accuracy as measured by Γ(f ′τ ). This is reassuring

because obtaining an accurate estimate of the noise level of the derivative tends to require

the evaluation of the derivative at six or more nearby points, whereas Γ(f ′τ ) requires only

one additional derivative evaluation. We also know that the noise level εf of the function

tends to be an estimate, up to a factor of 100, of the accuracy Γ(f ′τ ).

5 Reliable Estimates for Forward Differences

We now examine how the noise level affects the accuracy of a forward difference approxi-

mation to the derivative. In earlier work [12] we showed that we can determine a parameter

h∗ that is provably near-optimal when the function values are determined by a stochastic

process. Our numerical results showed that we obtain accurate derivative estimates even
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when the function is deterministic; but those results used τ = 10−3 as the tolerance in

the iterative solver, and thus the resulting functions fτ had relatively low noise levels, as

illustrated in Figure 3.1. In this section we examine how the accuracy of the derivative

estimate depends on the noise level of the function for a wide range of tolerances.

The results of the optimality of a difference parameter [12] depend on the assumption

that the function values are determined by a stochastic process. Specifically, assume that

f : R 7→ R is defined on an interval I by

f(t) = fs(t) + ε(t), t ∈ I, (5.1)

where fs : R 7→ R is a smooth, deterministic function and the random variables ε(t) are

independent and identically distributed for all t ∈ I. Under these assumptions, the noise

level of f is the standard deviation

εf = (Var{ε(t)})1/2 .

An optimal difference parameter h∗ > 0 minimizes the root mean squared error

E(h) = E

{(
f(t0 + h)− f(t0)

h
− f ′s(t0)

)2
}1/2

.

One of the main results in [12] is that if I = [t0, t0 + h0] and fs is twice differentiable, with

µL and µM denoting the minimum and maximum of |f ′′s | on I, then

(γ1µLεf )1/2 ≤ min
0≤h≤h0

E(h) ≤ (γ1µMεf )1/2 , γ1 = 21/2, (5.2)

provided that h0 ≥ h∗ for

h∗ = γ2

(
εf
µM

)1/2

, γ2 = 81/4 ≈ 1.68. (5.3)

The constraint h0 ≥ h∗ guarantees that the interval defined by h0 is not too small. The

results in [12] also show that the parameter h∗ in (5.3) is a good estimate for the minimizer

of E , that is,

(γ1µLεf )1/2 ≤ E(h∗) ≤ (γ1µM εf )1/2 . (5.4)

These bounds are narrow when f ′′s does not change significantly over I and can be used to

show that h∗ is nearly optimal, because the error obtained using h∗ is within a constant

factor of the minimal error.

The theory that we have outlined assumes that the function values are determined by a

stochastic process, but these results indicate how to determine a nearly optimal difference

parameter h when f is deterministic. All that is needed are estimates of the noise level εf
and of |f ′′| near t0; then (5.3) can be used to determine h with µM set to the estimate of

|f ′′|. We have already discussed the use of ECNoise [13] to determine the noise level; we

refer to [12, Section 5] for the details of the |f ′′| estimator that is used to determine h∗ in

our results.
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We have been discussing an algorithm for functions defined on R, but this algorithm

extends to the n-dimensional case, where f : Rn 7→ R, by using the algorithm on the

function t 7→ f(x0 + tp) with t0 = 0. Thus, the algorithm in [12] can be used to determine

a difference approximation

δf(x0; p) =
f(x0 + hp)− f(x0)

h
(5.5)

to the directional derivative f ′(x0; p). If the choice of h is a reasonable approximation to

the optimal difference parameter h∗ defined by (5.3) and µ ≈ |f ′′(t0)|, then the bounds (5.4)

on the expected error show that

Γ(δf) ≡
(γ1µ εf )1/2

|f ′(t0)|
(5.6)

is an estimate of the relative error between δf(x0; p) and f ′(x0; p). The computational

results in this section will show that the estimate Γ(δfτ ) for the function fτ defined in (3.1)

is an excellent estimate for the relative error

re(δfτ , f
′
τ ) = re

(
δfτ (x0; p), f ′τ (x0; p)

)
(5.7)

between δfτ (x0; p) and f ′τ (x0; p).

The estimate Γ(δfτ ) for the relative error in δf and the estimate Γ(f ′τ ) for the relative

error in the derivative of fτ rely on different assumptions. The estimate Γ(δfτ ) is based

on the assumption that the function satisfies a stochastic model, so it is not strictly valid

for deterministic functions. Also, a stochastic bound does not imply a deterministic bound.

On the other hand, the estimate Γ(f ′τ ) is based on the relative error between directional

derivatives along two nearby points in p.

We evaluate the accuracy of the forward-difference approximation (5.5) with the same

set of problems as in Sections 3 and 4. For each tolerance τ ∈ T we compute the direc-

tional derivative f ′(x0; p) with ADiMat [1] and use the algorithm in [12] to determine an

approximation δf(x0; p) to the directional derivative. The ECNoise algorithm computes a

noise level estimate for 431 problems, and the |f ′′| estimator has no Krylov failures for 368

of these problems. More Krylov failures occur in the |f ′′| estimator because the estimator

needs function values at points that are of order ε
1/4
f away from x0, whereas ECNoise can

work with points much closer to x0. The |f ′′| estimator returns an estimate on 366 of the

368 possible data points; this performance supports the high level of reliability of the |f ′′|
estimator.

We have plotted the distribution of re(δfτ , f
′
τ ) in Figure 5.1 for the cases where fτ

is computed with the bicgstab and pcg solvers, but similar results hold for other Krylov

solvers [11]. This plot shows the dependence of re(δfτ , f
′
τ ) on the estimate Γ(δfτ ) of the

relative error between δfτ and f ′τ . Data is restricted to points that satisfy Γ(f ′τ ) ≤ 0.05

and Γ(δfτ ) ≤ 0.05, so we can be reasonably sure that both the directional derivative f ′τ
and the difference approximation δfτ have two significant digits. Otherwise, it would not

be sensible to compare δfτ with f ′τ .
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Figure 5.1: Distribution of re(δfτ , f
′
τ ) for bicgstab (left) and pcg (right) when Γ(f ′τ ) ≤ 0.05

and Γ(δfτ ) ≤ 0.05. The dashed line is (t, t); the shaded region represents a factor 10±1

change about the line.

Figure 5.1 shows remarkable agreement between the relative error re(δfτ , f
′
τ ) and the

relative error estimate Γ(δfτ ). Since the shaded region represents a factor 10±1 change

about the dashed line (t, t), we conclude that Γ(δfτ ) is an order of magnitude estimate

of re(δfτ , f
′
τ ). We emphasize that the data for other Krylov solvers [11] show that this

conclusion holds for over 90% of the problems. There is also theoretical support for this

conclusion because it can be deduced from (5.4) if we assume that the computed h is close to

the theoretical h∗ defined by (5.3) and the stochastic bound (5.2) applies in the deterministic

case. A few data points fall outside the shaded region, but the deviations are small; in all

cases we have re(δfτ , f
′
τ ) ≤ γΓ(δfτ ) with γ ≤ 100.

The computational results in this section suggest that the bound Γ(δf) is an order of

magnitude estimate for the relative error re(δf, f ′) for a general function f . We can also

relate re(δf, f ′) to the relative noise level by noting that the stochastic bounds (5.2) suggest

that in the deterministic case we can expect that

re(δf, f ′) ≈

(
(γ1|f ′′(t0)| |f(t0)|)1/2

|f ′(t0)|

)
ε

1/2
f ,

where εf is the relative noise level of f . Under additional assumptions, this estimate shows

that re(δf, f ′) ≈ ε
1/2
f , a claim found in the literature but usually with little discussion of

the underlying assumptions. In this vein we note that the proportionality constant in front

of ε
1/2
f depends on f but can be estimated if f exhibits quadratic behavior. Assume, for

example, that

f(t) = α0 + 1
2α2(t− t∗)2,

where t∗ is the minimizer for f , and that |α0| is small relative to f(t0). Under these

assumptions, one can easily show that re(δf, f ′) is of the same order of magnitude as ε
1/2
f .
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Figure 6.1: Plots of Γ(f ′τ ) and Γ(δfτ ) for (left) bicgstab and (right) pcg. The lower dashed

line is (t, t); the upper line is (t, t1/2).

6 Derivatives or Differences?

In the preceding two sections we used the measures Γ(f ′τ ) and Γ(δfτ ) to analyze the accuracy

of derivative and difference approximations as a function of the noise level. We now compare

and contrast these findings and thus provide preliminary conclusions about the significance

of these results.

For the solvers bicgstab (left) and pcg (right), Figure 6.1 summarizes much of the in-

formation that we have obtained by plotting the measures Γ(f ′τ ) and Γ(δfτ ) for problems

where the ECNoise algorithm returns a noise level. Plots for other solvers can be found in

[11]. Note that in these plots the data is not restricted to problems where the measures

of accuracy suggest that the derivative or the forward difference has two significant digits,

that is, when Γ(f ′τ ) ≤ 0.05 or Γ(δfτ ) ≤ 0.05, respectively.

Figure 6.1 shows that if we consider problems with modest levels of noise (εf ≤ 10−10),

then we can reliably compute derivatives or difference approximations with accuracy that

generally meets our expectations. Moreover, an analysis of the data in [11] shows that

Γ(f ′τ ) ≤ 0.05 with few exceptions, so that we obtain at least two significant digits for at

least 98% of the problems. The accuracy of the difference approximation is acceptable with

Γ(δfτ ) ≤ 0.05 for at least 96% of the problems and almost all solvers; the exception is

gmres, with a 90% percentage.

Figure 6.1 also provides justification for using ε
1/2
f as an order of magnitude estimate

of Γ(δfτ ) and εf as a rough (usually within a factor of 100) estimate of Γ(f ′τ ) when the

measures of accuracy indicate that the results have at least two significant digits. The plots

that appear in [11] show that this observation applies to all the solvers considered.

A striking feature of Figure 6.1 is the large number of data points with Γ(f ′τ ) ≥ 0.05.

These points correspond to problems where the derivative does not satisfy minimal accuracy

requirements and is often unstable. We emphasize that almost all these points are for

problems with high noise levels, that is, εf > 10−10. Another interesting feature of Figure 6.1
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is that there are few points for which the difference approximation fails to satisfy the

accuracy requirement Γ(δfτ ) ≤ 0.05. A partial explanation for this observation is that it is

not possible to compute Γ(δfτ ) in about 50% of the problems with εf > 10−10. As pointed

out in Section 5, the algorithm for determining the optimal difference parameter needs to

evaluate the function at points that are order ε
1/4
f away from the base point; the Krylov

method that determines fτ tends to fail at these relatively remote points. This situation is

not likely to happen in a simulation where we can depend on the function being well-defined

when the components of the base point are perturbed by 10%.

A meaningful evaluation of the results for problems with high levels of noise requires

that we restrict the data to problems where εf > 10−10 and the Krylov solver converges

during the estimation of f ′′τ . We may still not be able to determine an optimal difference

parameter, but this is rare; in four of the solvers the estimation of f ′′τ fails on 2% of the

problems, and for the other three solvers the estimation fails on 6% of the problems.

The accuracy of the derivative f ′τ for problems with high levels of noise is generally

acceptable for all solvers since Γ(f ′τ ) ≤ 0.05 in at least 96% of these problems. However,

these percentages drop to 31% and 66% for bicgstab and idr, respectively. The failure to

satisfy Γ(f ′τ ) ≤ 0.05 for even 10% of the problems could be considered unacceptable, but the

smaller percentages for bicgstab and idr are due to the higher noise levels that are generated

by these solvers, as shown in Figure 3.2.

The performance of the difference estimate δfτ on problems with high levels of noise

follows a similar pattern. The percentage of problems with Γ(δfτ ) ≤ 0.05 is at least 90% for

most of the solvers, while the solvers with the smallest percentage are bicgstab and idr with

62% and 81%, respectively. An interesting observation on these results is that, contrary to

expectations, the results for bicgstab and idr favor the use of differences.

The theoretical and computational results in our work support the conclusion that

solvers with high levels of noise are likely to have higher percentage of problems with

inaccurate derivatives or difference approximations. Thus, the results for bicgstab and idr

could have been predicted from Figure 3.2 by noting that the percentage of problems with

high levels of noise level varies significantly between bicgstab and idr and the other solvers.

We have concentrated on the results for bicgstab and idr because these solvers generate

the highest level of noise and thus reflect the possible difficulties that may arise with ap-

plications with high levels of noise. In this case, as noted above, difference approximations

may indeed be more appropriate than derivative approximations. Moreover, as shown in

Figure 4.1, the derivatives can become unstable for high levels of noise.

We have shown that it is difficult to reliably compute derivatives or difference approxima-

tions for problems with high levels of noise. We may be able to improve the implementation

of the function and lower the noise level, but in any case we have provided the tools to

quantify the accuracy of these approximations and decide whether the accuracy is suitable

for the application under consideration.
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[11] J. J. Moré and S. M. Wild. Do you trust derivatives or differences?: Additional results.

See http://www.mcs.anl.gov/~wild/cnoise/.

19

http://www.sc.rwth-aachen.de/People/vehreschild/adimat/
http://www.sc.rwth-aachen.de/People/vehreschild/adimat/
http://dx.doi.org/10.1016/0377-0427(94)90293-3
http://dx.doi.org/10.1016/0377-0427(94)90294-1
http://dx.doi.org/10.1016/0377-0427(94)90294-1
http://dx.doi.org/10.1137/100787921
http://dx.doi.org/10.1145/2049662.2049663
http://dx.doi.org/10.1080/10556789208805503
http://etna.ricam.oeaw.ac.at/volumes/2001-2010/vol36/abstract.php?vol=36&pages= 126-148
http://etna.ricam.oeaw.ac.at/volumes/2001-2010/vol36/abstract.php?vol=36&pages= 126-148
http://dx.doi.org/10.1080/10556788.2012.656116
http://www.mcs.anl.gov/~wild/cnoise/
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